Microscopic observations of reductive manganite dissolution under oxic conditions.
نویسندگان
چکیده
At oxic/anoxic transition zones, manganese release from (hydr)oxide minerals into aqueous solution is a dynamic balance between mineral dissolution and Mn2+(aq) oxidation and precipitation, which are processes respectively promoted by organic reductants and molecular oxygen. We employ a flow-through atomic force microscope reactor (AFM-R) to investigate the reductive dissolution of the [010] surface of manganite (gamma-MnOOH) across a range of pH values and ascorbic acid concentrations in aqueous solutions equilibrated with atmospheric CO2 and O2. The apparent dissolution rate increases with higher ascorbic acid concentrations and lower pH values. Concurrent changes in surface morphology show that dissolution proceeds at low pH via etching and step retreat, while at high pH dissolution is concurrent with precipitation. The precipitates are characterized ex situ by X-ray photoelectron spectroscopy (XPS) and found to be Mn(III)-oxide. The onset of precipitation is consistent with an analysis of the thermodynamic driving forces for the reactions of a two-step mechanism. In the first step, Mn2+ is released to aqueous solution by reduction of gamma-MnOOH in reaction with ascorbic acid. This step is thermodynamically favorable under all conditions employed. In the second step, which leads to precipitation, surface adsorbed Mn2+ is oxidized by O2 to yield a Mn(III)-oxide precipitate. This step is thermodynamically possible only at pH > 5 for our experimental conditions. When the second step is active, the apparent dissolution rate equals the intrinsic dissolution rate minus the precipitation rate. Analysis of the growth rates observed in AFM indicates the precipitation rate reaches 71% of the intrinsic dissolution rate under some reactor conditions. Comparison of our gamma-MnOOH results to literature reports for Mn2+ oxidation on gamma-FeOOH indicates gamma-MnOOH is a more effective surface catalyst by a factor of 10(8).
منابع مشابه
Mechanisms of arsenic and lead release from hydrothermally altered rock.
This paper describes the effects of pH, dissolved oxygen (DO), redox conditions, and mixing ratio of different rocks on the leaching behaviors of As and Pb from hydrothermally altered rock as well as the functional groups incorporating As and Pb in the rock. Most of As and Pb were incorporated in the residual or crystalline phase although significant amounts were also determined to be exchangea...
متن کاملArsenic mobilization in a seawater inundated acid sulfate soil.
Tidal seawater inundation of coastal acid sulfate soils can generate Fe- and S0(4)-reducing conditions in previously oxic-acidic sediments. This creates potential for mobilization of As during the redox transition. We explore the consequences for As by investigating the hydrology, porewater geochemistry, solid-phase speciation, and mineralogical partitioning of As across two tidal fringe topose...
متن کاملWhy the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface
In order to improve the trophic state of Lake Sempach, a eutrophied lake in central Switzerland, its external phosphorus (P) load has been decreased and its hypolimnion has been artificially oxygenated to lower the lake-internal P recycling. Based on more than 15 yr of experience, we conclude that the reduction of the external P load resulted in a corresponding decrease of the lake’s P concentr...
متن کاملA Hydrous Manganese Oxide Doped Gel Probe Sampler for Measuring In Situ Reductive Dissolution Rates: II. Field Deployment
In situ rates of reductive dissolution in submerged shoreline sediments at Lake Tegel (Berlin, Germany) were measured with a novel hydrous manganese (Mn) oxide-doped gel probe sampler in concert with equilibrium gel probe and sequential extraction measurements. Rates were low in the top 8 cm, then showed a peak from 8 cm to 14 cm, with a maximum at 12 cm depth. This rate corresponded with a pea...
متن کاملDecrease of U(VI) Immobilization Capability of the Facultative Anaerobic Strain Paenibacillus sp. JG-TB8 under Anoxic Conditions Due to Strongly Reduced Phosphatase Activity
Interactions of a facultative anaerobic bacterial isolate named Paenibacillus sp. JG-TB8 with U(VI) were studied under oxic and anoxic conditions in order to assess the influence of the oxygen-dependent cell metabolism on microbial uranium mobilization and immobilization. We demonstrated that aerobically and anaerobically grown cells of Paenibacillus sp. JG-TB8 accumulate uranium from aqueous s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 37 11 شماره
صفحات -
تاریخ انتشار 2003